

U.S. Environmental Protection Agency

Ozone Depletion

Recent Additions | Contact Us | Print Version Search:

EPA Home > Ozone Depletion > Ozone Science > Environmental Indicators > Technical Supplement

Glossary

About Us

Chemicals

Resource Center

Ozone Science

Rules & Regulations

Enforcement

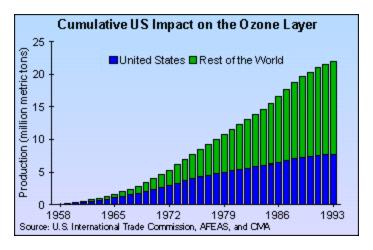
Alternatives / SNAP

Montreal Protocol

Fun Stuff

Environmental Indicators: Ozone Depletion

Technical Supplement


This technical appendix contains:

- a copy of the charts from the <u>protection of the ozone layer indicator</u> <u>bulletin;</u>
- the summary data used in preparing the charts;
- names of knowledgeable contacts for additional information;
- references to published data;
- selected information on the purpose of the data collection, geographic coverage, collection period, method and frequency of data collection, and data presentation.

In addition to the format below, the entire Technical Supplement is available in Adobe Acrobat (PDF) format. It is a 112K file called techsupp.pdf.

For additional information, please contact the contacts for each chart or Ms. Susan Auby, Mail Code 2152, Office of Environmental Information, USEPA, 1200 Pennsylvania Avenue, NW, Washington, DC 20460. Phone (202) 260-4901, e-mail: auby.susan@epa.gov.

Indicator: U.S. Impact on the Ozone layer

DATA SOURCE

U.S. production data for chlorofluorocarbons CFC-11 and CFC-12 come

from the United States International Trade Commission, *Synthetic Organic Chemicals; United States Production and Sales, 1993*, Table 3-1, p. 3-21 (Washington, DC: GPO, 1994), and from earlier annual reports in this series. Annual production data are summed and cumulative totals calculated for years 1958 through 1993.

Contact Person for U.S. Production of Ozone-Depleting Chemicals: Note: The ITC no longer provides production data. For questions regarding production data through 1994, please contact Elizabeth Nesbitt via email: nesbitt@usitc.gov.

World production data for CFC-11 and CFC-12 come from the Alternative Fluorocarbons Environmental Acceptability Study (AFEAS), *Production*, *Sales and Atmospheric Release of Fluorocarbons Through 1993*, Data Tables 2 and 3 (Washington, DC: AFEAS, 1995). Annual production data are reported by participating companies to an independent accountant. Production data are summed and reported for years 1958 through 1993 for the purpose of this bulletin. U.S. cumulative totals (ITC) are subtracted from AFEAS world totals to calculate "rest of the world" totals.

Contact Person for World Production of CFCs:
Katie D. Smythe
AFEAS Program Administrator
Alternative Fluorocarbons Environmental Acceptability Study
1200 South Hayes Street
Arlington, VA 22202
Email: info@afeas.org

Telephone: (202) 296-5000, ext. 5264 Web site: http://www.afeas.org

DATA COLLECTED AND PURPOSE

The U.S. International Trade Commission reports annually on domestic production and sales of synthetic organic chemicals and the raw materials from which they are made. The report is prepared under investigation No. 332-135, Synthetic Organic Chemical Reports. This investigation is conducted under the authority of section 332(g) of the Tariff Act of 1930 (19 U.S.C. 1322(g)), for the purpose of collecting data and preparing public reports on synthetic organic chemicals, plastics materials, medicinal chemicals, pesticides, and other chemical products. The data are collected by survey of chemical manufacturers and include the total output of each company's plants, i.e., the quantities produced for consumption within the producing plant, as well as the quantities produced for domestic and foreign sales. Statistics for an individual chemical or group of chemicals are given only when there are three or more producers, no one or two of which may be predominant, and when their publication would not violate the statutory provisions relating to unlawful disclosure of information accepted in confidence by the Commission.

Since 1976, the chemical industry has voluntarily reported the production and sales of fluorocarbons through a survey conducted by an independent accountant (Grant Thornton LLP) on behalf of the Chemical Manufacturers Association until 1991 and AFEAS thereafter. The purpose of the survey is to provide the scientific community with data on atmospheric release of fluorocarbons.

GEOGRAPHICAL COVERAGE

In the AFEAS survey, global production of CFCs reflects production by

plants in the following countries: Argentina, Australia, Brazil, Canada, the European Union, Japan, Mexico, South America, the United States, and Venezuela. It has been estimated that the data collected for 1993 represents probably less than 75 percent of worldwide production for dispersive uses. Coverage varies from year to year since 1982, as shown in the following table. For years prior to 1982, 100 percent coverage is assumed.

U.S. production reported to ITC is the total quantity of a commodity made available by original manufacturers located within the customs territory of the United States (including the 50 states, the District of Columbia, and Puerto Rico).

Table 1: World coverage of CFC-11 and CFC-12 production data, 1982-1993

Year	World Coverage
1982	87%
1983	86%
1984	85%
1985	83%
1986	82%
1987	80%
1988	79%
1989	78%
1990	70%
1991	70%
1992	75%
1993	<75%

Source: World Resources Institute (1982-1989) and AFEAS (1990-1993).

DATA COLLECTION PERIOD

For CFC-12, there is an unbroken time series for world production since 1931 and for U.S. production since 1958. For CFC-11, there is an unbroken time series for world production since 1934 and for U.S. production since 1958. Prior to 1958, total cumulative production of CFC-11 and CFC-12 was less than 750 thousand metric tons. For graphical purposes, only data from 1958 forward are displayed.

METHOD AND FREQUENCY OF DATA COLLECTION

Data contained in the ITC annual report are compiled primarily from the Commission's questionnaires sent to domestic chemical producers (643 companies for the 1993 annual report). Data are collected annually. Data contained in the AFEAS annual report are compiled from questionnaires solicited by the Alternative Fluorocarbons Environmental Acceptability Study and submitted by chemical manufacturers. A listing of all the companies surveyed inclusive of any related subsidiaries and/or joint ventures that may have reported data is contained in each annual report. Sales are divided into use categories, such as refrigeration, foam blowing, aerosols, solvents, and other uses. Some degree of geographical breakdown is also provided. In addition, calculations of atmospheric release of fluorocarbons, based on

the survey data, are made. Further detail of data collection and emission estimation procedures and associated uncertainties, and the geographical distribution of emissions has been published (see References below).

DATA PRESENTATION

The data for the indicator (Figure 2) which are listed in Table 2 show the total cumulative production of CFC-11 and CFC-12 for the United States and the rest of the world from 1958 through 1993. See the table above for percent of world coverage in a given year. ITC reports production data in kilograms and AFEAS reports in metric tons. For this bulletin, data were converted to metric tons.

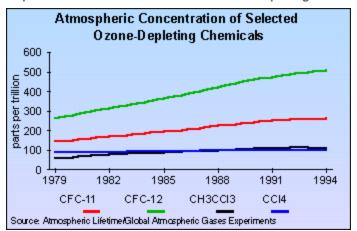
Table 2: Cumulative production of CFC-11 and CFC-12 for the United States and the rest of the world, 1958-1993 (thousand metric tons)

Year	United States	Rest of the World	Total
1958	82.5	22.9	105.4
1959	181.2	50.2	231.4
1960	289.5	94.4	383.9
1961	409.4	147.4	556.8
1962	560.3	207.5	767.8
1963	722.5	290.5	1,013.0
1964	893.3	407.4	1,300.7
1965	1,093.7	527.6	1,621.3
1966	1,300.9	686.7	1,987.6
1967	1,524.1	876.7	2,400.8
1968	1,764.5	1,099.8	2,864.3
1969	2,039.5	1,356.1	3,395.6
1970	2,320.7	1,652.7	3,973.4
1971	2,614.4	1,986.1	4,600.5
1972	2,949.5	2,363.8	5,313.3
1973	3,322.6	2,792.4	6,115.0
1974	3,698.4	3,267.6	6,966.0
1975	3,999.0	3,708.9	7,707.9
1976	4,293.5	4,220.7	8,514.2
1977	4,552.2	4,729.7	9,281.9
1978	4,788.5	5,249.9	10,038.4
1979	4,997.6	5,776.1	10,773.7
1980	5,203.1	6,313.3	11,516.4
1981	5,424.5	6,851.2	12,275.7
1982	5,605.2	7,424.4	13,029.6
1983	5,812.6	8,011.1	13,823.7
1984	6,049.2	8,645.5	14,694.7
1985	6,265.8	9,329.2	15,595.1
1986	6,503.7	10,070.8	16,574.5
1987	6,745.3	10,908.2	17,653.5
1988	7,045.9	11,697.1	18,743.0
1989	7,270.4	12,426.4	19,696.8
1990	7,426.0	12,933.5	20,359.5
1991	7,542.2	13,443.5	20,985.7

1992	7,661.6	13,860.9	21,522.5
1993	7,778.1	14,226.8	22,004.9

Source: ITC and AFEAS, with world coverage factors applied to AFEAS data.

REFERENCES


Alternative Fluorocarbons Environmental Acceptability Study, *Production, Sales and Atmospheric Release of Fluorocarbons through 1993* (Washington, DC: AFEAS, 1995). Note: This report was published annually by the Chemical Manufacturers Association until 1991. Since 1992, it has been published by the Alternative Fluorocarbons Environmental Acceptability Study.

Gamlen, P.H., B.C. Lane, and P.M. Midgely, The Production and Release to the Atmosphere of CCl₃F and CCl₂F₂ (Chlorofluorocarbons CFC-11 and CFC-12). *Atmospheric Environment*, 20: 1107-1085 (1986).

McCarthy, R.L., F.A. Bower, and J.P. Jenson, The Fluorocarbon-Ozone Theory - I. Production and Release: World Production and Release of CCI₃F and CCI₂F₂ (Fluorocarbons 11 and 12) Through 1975. *Atmospheric Environment*, 11: 491-497 (1977).

United States International Trade Commission (ITC), *Synthetic Organic Chemicals; United States Production and Sales, 1993*, Table 3-1, pp. 3-19 and 3-21 (Washington, DC: GPO, 1994), and from earlier annual reports in this series.

Indicator:
Atmospheric Concentration of Selected Ozone-Depleting Chemicals

DATA SOURCE

Measurements of the atmospheric concentrations of selected ozone-depleting chemicals come from the Atmospheric Lifetime Experiment (ALE)/Global Atmospheric Gases Experiment (GAGE)/Advanced GAGE network.

Contact Person for Atmospheric Concentrations of Selected Ozone-Depleting Chemicals: Tom Boden U.S. Department of Energy
Oak Ridge National Laboratory
Carbon Dioxide Information Analysis Center (CDIAC)
P.O. Box 2008

Oak Ridge, Tennessee 37831-6335

Telephone: (423) 241-4842 Email: bodenta@ornl.gov

For information about CDIAC numeric data packages and select data bases, contact:
Sonja Jones
U.S. Department of Energy
Oak Ridge National Laboratory
Carbon Dioxide Information Analysis Center (CDIAC)
P.O. Box 2008
Oak Ridge, Tennessee 37831-6335

Telephone: (423) 574-3645 Email: cdiac@ornl.gov

DATA COLLECTED AND PURPOSE

In the ALE/GAGE/AGAGE global network program, continuous high frequency gas chromatographic measurements of two biogenic/anthropogenic gases (methane and nitrous oxide) and five anthropogenic gases [chlorofluorocarbons CFCl₃ (CFC-11), CF₂Cl₂ (CFC-12), and CF₂CICFCl₂ (CFC-113); methyl chloroform, CH₃CCL₃; and carbon tetrachloride, CCl4] are carried out at four globally-distributed sites: Cape Grim, Tasmania; Point Matatula, American Samoa; Ragged Point, Barbados; and Mace Head, Ireland. Stations also previously existed at Cape Meares, Oregon, and at Adrigole, Ireland. The program, which began in 1978, is designed to accurately determine the atmospheric concentrations and long-term trends of these important trace gases so that their global circulation rates and globally averaged atmospheric lifetimes can be calculated. The Cape Grim, Tasmania station was selected as the source of data for this indicator as it is both representative and has the longest time series for the complete ALE/GAGE schedule of trace gases.

GEOGRAPHICAL COVERAGE

Global. The Cape Grim data are shown.

DATA COLLECTION PERIOD

Data for CFC-11, CFC-12, and nitrous oxide have been collected fairly continuously at each station since July 1978. Beginning in late 1983 at Cape Grim and later at the other sites, the additional measurements were added to the program. By mid-1986, ALE had ended and was succeeded by GAGE at all sites except the Adrigole (Ireland) station, which closed in December 1983 and was replaced by the GAGE station at Mace Head in January 1987.

METHOD AND FREQUENCY OF DATA COLLECTION

Air samples, collected 4 times daily for ALE and 12 times daily for GAGE, are filtered, dried, and analyzed using Hewlett Packard HP5840A (ALE) or HP5880A (GAGE) electron capture gas chromatographs. The recently initiated Advanced GAGE (AGAGE) uses a custom-designed sample

module and HP5890 and Carle Instruments gas chromatographic components.

DATA PRESENTATION

The data from Cape Grim used for the indicator (Figure 3), which are listed in Table 3, show monthly mean halocarbon mixing ratios expressed as parts per trillion by volume. The principal investigators calculated monthly mixing ratios by averaging individual measurements (after removing pollution events). Data are available, in principle, from measurements taken four-times daily for ALE from July 1978 through June 1985 and 12 times-daily for GAGE from December 1981 through June 1994. For CFC-11, individual measurements actually represent averages of the separate measurements made on two different chromatographic columns when both values are available. For the graphical presentation of the data, in the bulletin gaps caused by missing monthly values were filled with averages.

Table 3: Atmospheric concentrations of selected ozone-depleting chemicals, 1978-1994 (parts per trillion by volume)

CFC-11 (ALE)

Mo/Yr	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
1978							135.5	137.4	139.0	138.8	141.1	141.3
1979	143.8	144.0	144.2	144.9	145.8	147.0	147.5	148.5	149.5	150.6	151.3	151.6
1980	152.3	153.4	154.4	155.1	157.1	157.9	158.0	158.7	160.4	159.8	161.0	162.2
1981	162.6	161.3	162.5	162.9	164.5	166.0	166.5	na	166.8	na	168.2	168.7
1982	169.3	170.0	171.3	171.8	172.4	174.0	174.6	175.4	176.1	177.3	178.4	178.7
1983	179.2	179.6	179.4	180.0	180.7	181.4	182.3	183.8	184.8	185.5	186.3	187.0
1984	187.2	187.8	188.5	189.8	190.8	191.0	191.9	192.6	193.2	193.4	193.8	194.5
1985	195.0	195.6	196.3	197.7	198.6	198.9						

CFC-11 (GAGE)

```
Mo/Yr Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
1981
1982 170.6 171.0 171.8 172.8 174.0 174.6 175.4 176.4 176.9 177.0 177.8 178.2
1983 178.5 179.5 180.0 180.8 181.6 182.3 183.2 183.0 182.4 183.5 184.0 184.5
1984 184.9 185.4 186.5 188.6 189.5 190.3 191.2 192.0 192.6 193.3 193.8 194.7
1985 195.5 196.0 197.3 198.6 199.2 199.8 200.7 201.8 202.5 203.0 203.8 204.2
1986 204.4 205.0 206.1 207.5 209.1 209.8 210.8 212.0 212.4 212.4 211.8 212.4
1987 213.0 213.3 na
                         na 218.1 218.8 na 222.5 222.5 223.7 224.4 224.8
1988 225.9 226.5 228.0 228.6 230.2 230.5 231.7 232.6 233.4 234.2 234.0 234.2
1989 234.8 235.3 236.9 238.0 239.0 239.9 240.3 241.2 242.3 243.1 243.4 243.8
1990 244.2 244.8 245.8 246.8 247.1 249.0 249.5 249.9 250.9 251.5 251.8 252.0
1991 251.4 251.0 251.5 252.1 253.0 254.1 254.4 254.6 255.4 256.1 256.3 257.0
1992 256.8 257.6 260.2 260.4 260.7 261.3 260.8 259.8 260.4 261.0 261.4 260.8
1993 259.5 259.2 259.5 259.7 260.1 259.4 259.5 260.0 260.8 261.3 261.6 261.7
1994 261.8 261.8 260.5 260.9 260.8 260.8
```

Table 3: Atmospheric concentrations of selected ozone-depleting chemicals, 1978-1994 (continued)

(parts per trillion by volume)

CFC-12 (ALE)

Mo/Yr	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
1978							251.0	252.2	255.1	257.0	262.7	262.5
1979	265.7	266.4	267.4	268.7	270.6	272.1	272.9	274.7	276.1	276.2	277.5	278.0
1980	279.1	na	294.7	294.9	296.8	297.3						
1981	298.5	297.6	299.9	301.6	303.6	305.3	306.0	na	308.5	308.9	310.5	311.6
1982	312.9	313.8	316.2	317.6	318.0	321.2	322.8	324.5	325.3	328.5	330.9	331.3
1983	332.2	334.2	336.2	337.5	338.8	340.5	342.0	342.7	342.9	344.6	345.9	347.0
1984	347.8	349.0	350.3	353.2	357.1	358.3	360.0	361.1	362.2	363.2	364.4	365.2
1985	366.0	367.7	369.4	371.7	373.1	373.9						

CFC-12 (GAGE)

Mo/Yr	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
1981												315.5
1982	316.9	317.8	319.5	321.5	324.0	325.2	326.3	328.2	329.3	329.8	331.3	331.9
1983	332.6	335.5	337.7	339.1	340.5	341.6	342.9	343.0	342.2	344.0	345.1	345.8
1984	346.2	347.0	348.0	351.8	354.8	355.8	357.1	358.8	358.9	359.8	362.2	365.3
1985	367.6	368.6	370.5	373.0	374.0	375.1	376.6	378.5	379.6	380.7	382.3	383.6
1986	383.8	385.2	386.9	391.8	393.4	395.1	396.5	397.7	399.2	398.5	398.9	399.8
1987	400.7	400.0	na	na	409.3	410.8	na	415.2	415.5	417.5	418.4	419.0
1988	421.1	422.1	424.7	426.1	433.5	433.3	435.7	437.5	438.7	439.9	440.4	441.1
1989	442.3	443.5	445.6	448.2	450.0	451.4	453.2	454.7	456.2	457.5	459.0	460.6
1990	461.4	463.3	465.1	466.6	467.6	468.7	470.1	471.3	473.0	474.4	475.5	476.0
1991	476.3	476.6	477.8	479.5	481.6	482.4	483.6	485.0	487.1	487.9	488.5	489.7
1992	489.9	491.4	494.8	496.0	497.6	498.4	498.2	496.2	496.8	497.5	498.5	498.8
1993	497.0	497.6	498.4	499.0	500.2	500.6	501.3	502.4	504.4	506.4	507.0	507.7
1994	507.6	508.0	508.4	509.4	510.0	510.3						

Table 3: Atmospheric concentrations of selected ozone-depleting chemicals, 1978-1994 (continued)

(parts per trillion by volume)

CH₃CCl₃ (ALE)

Mo/Yr	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
1978							56.2	54.5	56.0	57.9	61.2	60.6
1979	59.8	59.8	61.4	62.5	62.7	63.8	63.2	64.3	65.2	66.1	66.6	66.3
1980	65.9	66.2	67.4	67.0	70.2	71.0	71.6	72.5	73.5	74.2	74.0	73.1
1981	73.1	73.3	74.6	75.3	75.9	76.4	76.2	na	76.6	78.7	78.9	78.1
1982	77.8	77.8	78.5	79.9	81.4	82.7	83.6	84.1	84.3	85.2	85.2	84.4
1983	84.0	84.0	84.2	84.4	85.4	85.9	87.2	87.5	87.2	87.6	87.5	86.7
1984	86.3	86.3	86.9	87.4	na	na	na	na	na	93.2	92.5	91.7
1985	91.0	90.8	91.3	92.9	93.8	94.4						

CH₃CCl₃ (GAGE)

Mo/Yr	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
1981												80.8
1982	80.2	80.0	80.1	80.7	81.9	82.8	83.2	84.2	84.2	83.9	83.6	83.2
1983	826	83.5	84.5	85.2	86.0	86 4	87.2	88 1	88 1	88.3	88.0	87.5

```
      1984
      86.8
      86.3
      86.9
      87.5
      88.4
      89.4
      90.2
      91.1
      91.4
      91.0
      91.0
      90.5

      1985
      89.7
      89.5
      90.3
      91.6
      92.3
      92.7
      93.7
      95.7
      96.6
      96.1
      95.8
      94.9

      1986
      94.0
      93.8
      94.4
      96.6
      97.3
      98.3
      99.1
      99.3
      99.9
      98.7
      97.5
      96.9

      1987
      96.3
      95.9
      96.5
      97.6
      98.7
      99.8
      na
      102.1
      101.9
      102.3
      101.8
      101.3

      1988
      100.9
      100.3
      100.8
      101.8
      104.4
      105.1
      105.8
      106.4
      106.7
      106.7
      106.7
      105.9

      1989
      105.3
      105.4
      106.2
      107.3
      108.2
      109.0
      109.3
      109.8
      110.3
      110.0
      109.4
      109.5

      1990
      108.6
      108.7
      108.7
      109.6
      na
      111.6
      112.2
      112.8
      113.4
      113.5
      113.2
      112.3

      1991
      115.1<
```

Table 3: Atmospheric concentrations of selected ozone-depleting chemicals, 1978-1994 (continued)

(parts per trillion by volume)

CCI ₄ (ALE)												
Mo/Yr	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
1978							88.4	87.8	88.3	88.4	88.8	88.4
1979	87.8	87.4	87.7	87.9	87.9	87.7	87.7	87.6	87.6	88.6	88.8	88.9
1980	88.9	89.1	89.5	90.2	90.7	90.6	89.5	89.4	90.1	89.3	90.5	90.4
1981	90.5	89.4	89.8	89.9	90.3	90.8	91.2	na	na	90.5	90.5	90.5
1982	90.8	91.1	91.3	91.5	91.6	92.1	92.1	92.1	92.1	92.6	92.9	92.8
1983	93.0	93.2	93.2	93.3	93.3	93.3	93.3	93.0	92.8	93.0	92.9	93.2
1984	93.2	93.5	93.5	93.8	na	na	na	na	na	95.7	95.5	95.3
1985	95.5	95.4	95.4	95.7	96.0	95.7						

CCI₄ (GAGE)

Mo/Yr	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
1981												92.4
1982	92.1	92.2	92.2	92.4	93.5	93.2	93.3	93.4	93.2	92.9	93.0	92.9
1983	93.0	93.5	93.8	94.0	94.0	93.9	93.9	93.9	93.5	93.6	93.6	93.8
1984	93.9	93.9	94.4	95.2	95.2	95.3	95.3	95.4	95.3	95.4	95.5	95.9
1985	96.2	96.3	96.5	96.8	96.9	96.6	96.7	97.1	97.3	97.2	97.4	97.4
1986	97.4	97.5	97.6	98.3	98.3	98.4	98.5	98.3	98.6	98.6	99.0	99.1
1987	99.2	99.5	99.5	99.5	99.6	99.8	na	100.2	100.1	100.3	100.3	100.4
1988	100.7	100.6	100.7	100.9	100.7	101.0	101.0	100.5	100.4	100.4	100.5	100.6
1989	100.7	100.8	101.0	101.1	101.2	101.1	101.2	101.2	101.1	101.1	101.3	102.0
1990	102.1	102.4	102.6	102.3	102.1	102.5	102.4	102.3	102.4	102.3	102.5	102.4
1991	102.1	102.0	102.1	102.1	102.1	102.2	101.8	101.8	101.7	101.8	101.7	101.9
1992	101.8	101.8	100.8	100.9	100.7	100.7	101.1	101.9	101.8	101.7	101.9	101.9
1993	101.8	101.6	101.5	101.4	101.5	101.3	101.1	101.2	101.1	na	na	na
1994	na	100.6	101.5	101.6	101.3	101.2						

na = not available.

Source: Prinn, et al. (1994) and recent updates to database. See References.

REFERENCES

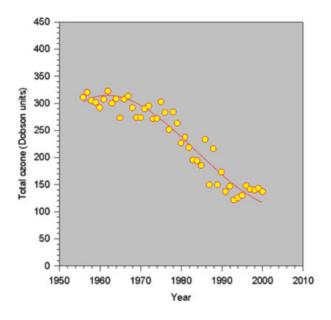
Cunnold, D.M., P.J. Fraser, R.F. Weiss, R.G. Prinn, P.G. Simmonds, F.N.

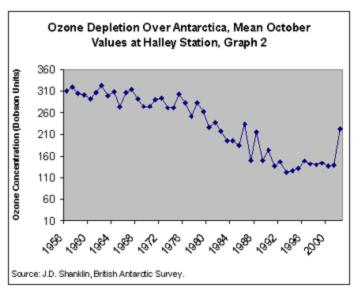
Alyea, and A.J. Crawford. Global trends and annual releases of CCl_3F and CCl_2F_2 estimated from ALE/GAGE and other measurements for July 1978 to June 1991. *J. Geophys. Res.* 99(D1):1107-1126 (January 1994).

Prinn, R.G., P.G. Simmonds, R.A. Rasmussen, R.D. Rosen, F.N. Alyea, C.A. Cardelino, A.J. Crawford, D.M. Cunnold, P.J. Fraser, and J.E. Lovelock. The Atmospheric Lifetime Experiment. 1. Introduction, instrumentation and overview. *J. Geophys. Res.* 88 (C13):8353-8367 (January 1983).

Prinn, R.G., D.M. Cunnold, R.A. Rasmussen, P.G. Simmonds, F.N. Alyea, A.J. Crawford, P.J. Fraser, and R.D. Rosen. Atmospheric emissions and trends of nitrous oxide deduced from 10 years of ALE-GAGE data. *J. Geophys. Res.* 95(D11):18369-18385 (October 1990).

Prinn, R.G., D.M. Cunnold, P.G. Simmonds, F.N. Alyea, R. Boldi, A.J. Crawford, P.J. Fraser, D. Gutzler, D. Hartley, R. Rosen, and R.A. Rasmussen. Global average concentration and trend for hydroxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978-1990. *J. Geophys. Res.* 97(D2):2445-2461 (February 1992).


Prinn, R.G., R.F. Weiss, F.N. Alyea, D.M. Cunnold, P.J. Fraser, P.G. Simmonds, A.J. Crawford, R.A. Rasmussen, and R.D. Rosen. 1994. "Atmospheric CFC-11 (CCL3F), CFC-12 (CCL2F2), and N2O from the ALE-GAGE network," pp. 396-420 . In T.A. Boden, D.P. Kaiser, R.J. Sepanski, and F.W. Stoss (eds.), *Trends '93: A Compendium of Data on Global Change*. ORNL/CDIAC-65. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, U.S.A.


Prinn, R.G., R.F. Weiss, B.R. Miller, J. Huang, F.N. Alyea, D.M. Cunnold, P.B. Fraser, D.E. Hartley, and P.G. Simmonds. Atmospheric trends and lifetime of Trichloroethane and global hydroxyl radical concentrations. Accepted for publication in *Science* (May, 1995).

Simmonds, P., D. Cunnold, F. Alyea, C. Cardelino, A. Crawford, P. Fraser, R. Prinn, R. Rasmussen, and R. Rosen. Carbon tetrachloride lifetime and emissions determined from global daily measurements during 1978-1985. *J. Atmos. Chem.* 7: 35-58 (1988).

Indicator:
Ozone Depletion Over Antarctica

Ozone Depletion Over Antarctica, Mean October Values at Halley Station, Graph 1

DATA SOURCE

British Antarctic Survey (BAS)
High Cross, Madingley Road
CAMBRIDGE, CB3 0ET
United Kingdom
Contact Person for Ozone Concentrations Over Antarctica:
Jon Shanklin
email: j.shanklin@bas.ac.uk

DATA COLLECTED AND PURPOSE

Data are collected using the Dobson ozone spectrophotometer. Some experimental zenith observations at low solar elevation are included in data beginning in April 1993.

GEOGRAPHICAL COVERAGE

The Dobson ozone spectrophotometer is at the Halley Research Station, located at 75°35' South and 26°34' West on the Brunts Ice Shelf in Coats Land. Antarctica.

DATA COLLECTION PERIOD

The data collection period is from 1956 through 2002.

METHODOLOGY AND FREQUENCY OF DATA COLLECTION

Data are collected with a Dobson ozone spectrophotometer at the Halley Station in Antarctica. 1987/88 data include ozonesonde flight results. Data are approximately corrected to Bass-Paur ozone absorption coefficients.

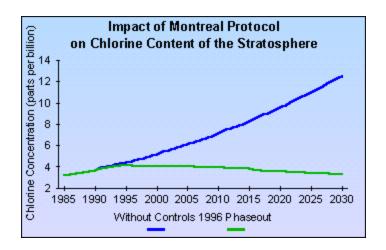
DATA PRESENTATION

Data are expressed in Dobson units for the time period 1956 through 2002.

Table 4: Ozone Depletion Over Antarctica, Mean October Values, 1956-2002

		2002	
Year	Dobson units	Year	Dobson units
1956	311	1981	237
1957	320	1982	218
1958	305	1983	195
1959	302	1984	194
1960	292	1985	185
1961	307	1986	233
1962	322	1987	150
1963	300	1988	216
1964	308	1989	150
1965	273	1990	173
1966	307	1991	137
1967	313	1992	147
1968	292	1993	122
1969	274	1994	126
1970	274	1995	130
1971	290	1996	148
1972	295	1997	141
1973	271	1998	140
1974	272	1999	143
1975	303	2000	137
1976	283	2001	138
1977	251	2002	224
1978	284		
1979	263		
1980	226		

REFERENCES


Natural Environment Research Council, British Antarctic Survey. 2002. "Hallev Research Station."

http://www.antarctica.ac.uk/Living_and_Working/Stations/Halley/index.php. Accessed 5/30/03.

Natural Environment Research Council, British Antarctic Survey. 2003. "British Antarctic Survey Ozone Halley, Rothera, and Vernadsky/Faraday." http://www.antarctica.ac.uk/met/jds/ozone/. Accessed 5/30/03.

Shanklin, J.D. British Antarctic Survey, Madingley Road, Cambridge, England. CB3 0ET. "Provisional monthly mean ozone values for Faraday/Vernadsky and Halley between 1956 and 2002." http://www.antarctica.ac.uk/met/jds/ozone/data/zoz5699.dat. Accessed 5/30/03.

Indicator: Impact of Montreal Protocol on Chlorine Content of the Atmosphere

DATA SOURCE

Information extracted from industry reports was used as input to a model that generates estimates of chlorine loading to the stratosphere. Industry reports are on file at the U.S. Environmental Protection Agency.

Contact Person for Information on Chlorine Loading to the Stratosphere :

Erin Birgfeld
U.S. Environmental Protection Agency (EPA)
Office of Air and Radiation
Global Programs Division
Mail Code 6205J
1200 Pennsylvania Avenue, NW
Washington, DC 20460
Telephone: (202) 564-9079
Email: birgfeld.erin@epa.gov

DATA COLLECTED AND PURPOSE

Data on chlorine loading were not collected, but were generated by a model, based on reported information.

GEOGRAPHICAL COVERAGE

U.S. EPA: Page 1 of 3

U.S. Environmental Protection Agency

Stationary Air Conditioning

Recent Additions | Contact Us | Print Version

earch:

GO

EPA Home > Ozone Depletion > Rules & Regulations > Stationary AC > {breadcrumbs}

General Information

{Page Name}

Consumers

Global.

Technicians

DATA COLLECTION PERIOD

Refrigerant Sales

Model-generated estimates based on reported data are from 1985 through 1991. Later estimates are model-generated forecasts are based on assumptions to 2030.

Reclamation

Disposal

METHODOLOGY AND FREQUENCY OF DATA COLLECTION

Halon Handling

Data were not collected, but generated by the Atmospheric Stabilization Framework (ASF), a model developed during a 1988 workshop sponsored by NASA and EPA. The ASF is documented at NASA. The ASF is not a physical simulation. Rather, it is a parameterized model based on more complicated simulations and calibrated to meet historical measurements of ozone depletion in 1985 and 1989.

Regulations

DATA PRESENTATION

The data for the indicator (Figure 5), which are listed in Table 5, show adjusted atmospheric chlorine loading in parts per billion (ppb) for the time period 1985 to 2030. One scenario assumes no controls to limit chlorine loading and the other scenario assumes the phaseout of production and consumption of ozone-depleting chemicals in accordance with the Montreal Protocol on Substances that Deplete the Ozone Layer (which entered into force in 1989).

Table 5: Adjusted atmospheric chlorine loading, 1985-2030 (parts per billion)

Year	No Controls	1996 Phaseout	Year	No Controls	1996 Phaseout
1985	3.22	3.22	2008	6.70	3.93
1986	3.34	3.34	2009	6.91	3.91
1987	3.43	3.43	2010	7.13	3.90
1988	3.52	3.52	2011	7.35	3.87
1989	3.62	3.62	2012	7.58	3.84
1990	3.73	3.72	2013	7.81	3.81
1991	3.85	3.83	2014	8.04	3.78
1992	3.98	3.93	2015	8.28	3.75
1993	4.11	4.02	2016	8.52	3.72
1994	4.25	4.08	2017	8.77	3.69
1995	4.39	4.10	2018	9.03	3.65
1996	4.54	4.10	2019	9.29	3.62
1997	4.69	4.05	2020	9.55	3.60

U.S. EPA: Page 2 of 3

1998	4.84	4.00	2021	9.82	3.57
1999	5.00	3.98	2022	10.10	3.54
2000	5.17	3.97	2023	10.38	3.51
2001	5.36	3.97	2024	10.68	3.47
2002	5.52	3.97	2025	10.95	3.44
2003	5.71	3.97	2026	11.25	3.41
2004	5.90	3.97	2027	11.55	3.38
2005	6.09	3.95	2028	11.85	3.35
2006	6.29	3.95	2029	12.17	3.32
2007	6.49	3.94	2030	12.48	3.29

REFERENCES

National Aeronautics and Space Administration (NASA), Goddard Space Flight Center (GSFC). *An Assessment Model for Atmospheric Composition*. NASA Conference Publication 3203 (94N17827) (Greenbelt, MD: NASA/GSFC, 1988).

TERMINOLOGY

A *chlorofluorocarbon* is one of a group of organic chemicals containing carbon, fluorine and chlorine. CFCs have been used as coolants in refrigerators and air conditioners and as foaming agents, solvents, and aerosol propellants. Chlorofluorocarbons discussed in this technical supplement include CFC-11 (Trichlorofluoromethane), CFC-12 (Dichlorodifluoromethane), CFC-113 (Trichlorotrifluoroethane), and HCFC-22 (Chlorodifluoromethane).

Carbon tetrachloride is an industrial solvent. It is largely used in the manufacture of chlorofluorocarbons and similar chemicals.

A *Dobson Unit* is a unit of measure used to estimate the thickness of the ozone layer. One hundred (100) Dobson units represent a quantity equivalent to a 1 mm thick layer of ozone at sea level.

Hydrochlorofluorocarbons contain hydrogen, in addition to carbon, chlorine and fluorine. HCFCs have many of the same uses as CFCs and are increasingly used as interim substitutes for CFCs. HCFCs retain many of the desirable properties of CFCs but because they exist for a shorter time in the atmosphere, ozone depletion and global warming concerns are significantly reduced.

Irradiance refers to solar light that is reflected in the atmosphere.

Methyl chloroform (1,1,1-Trichloroethane or CH₃CCl₃) is an industrial solvent for essential uses.

Radiance refers to solar light.

Links to Other Information

- Ozone Depletion Science
- Ozone Monitoring
- UV Index and UV Monitoring
- Health Effects of Ozone Depletion

U.S. EPA: Page 3 of 3

Ozone Home | Ozone Science | Rules & Regulations | Alternatives

EPA Home | Privacy and Security Notice | Contact Us

Last updated on Friday, June 20th, 2003 URL: http://jamesm2/ozone/science/indicat/test.htm